ALEXANDER KLIMOVICH

PhD, Research Associate

Zoological Institute

Christian-Albrechts University Kiel

Kiel, Germany

 
 

About me

I am a developmental biologist fascinated by the evolution of animal complexity. 

What evolutionary transitions at the dawn of multicellular life made the rise of Animals possible?  

In the recent years, the evolution of stem cells and life-spans was my main focus. 

With my colleagues, we uncovered the ancient evolutionary origin of tumor formation in metazoans.

We also revealed a pivotal role of the nuclear envelope in the non-senescence of the "immortal" Hydra. 

 

My current research is focused on tracing the origin and function of the nervous system. 

We are particularly interested in the emergence of pacemaker neurons in early branching metazoans.

Very recently, I discovered a remarkable abundance and functional importance of

taxonomically-restricted genes in the nervous system of Hydra.

I am a passionate teacher and dedicate myself to training students in developmental biology and molecular cell biology.

A field course "Developmental Biology of Marine Invertebrates" is the highlight of my teaching program.

PUBLICATIONS

Selected Articles and Preprints

 

March 19, 2020

CAUSATIVE ROLE OF THE MICROBIOME IN TUMOR DEVELOPMENT

Dynamic interactions within the host-associated microbiota cause tumor formation in the basal metazoan Hydra

Rathje et al.

PLOS Pathogens

We demonstrate that tumor development in the basal metazoan Hydra is caused by a dynamic interplay between an environmental spirochete, the host-associated resident microbiota. Our study uncovers an evolutionary conserved role of the resident microbiome in guarding host’s tissue homeostasis.

TRANSGENESIS IN HYDRA:

DETAILED PROTOCOL

June 03, 2019

Transgenesis in Hydra to characterize gene function and

visualize cell behavior

Klimovich et al.

Nature Protocols

We describe a procedure for establishment

of stable transgenic Hydra lines by embryo microinjection. The method allows method allows constitutive or inducible gain- and loss-of-function approaches, as well as in vivo tracing of individual cells and thereby dissecting the ancestral circuitry controlling animal development.

PROTOTYPICAL PACEMAKER NEURONS INTERACT WITH MICROBIOTA

July 09, 2020

Prototypical pacemaker neurons interact with the resident microbiota

Klimovich et al.

Proc Natl Acad Sci USA

Using a combination of single-cell transcriptomics, immunochemistry, and functional experiments, we

identified and functionally characterized pacemaker cells in the basal metazoan Hydra. We conclude that prototypical pacemaker neurons are immunocompetent cells

capable of interacting with the microbiome.

ROLE OF THE LAMIN PROTEIN

IN NON-SENESCENCE

OF HYDRA

May 10, 2018

Non-senescent Hydra tolerates

severe disturbances

in the nuclear lamina

Klimovich et al.

Aging (Albany NY)

We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra

NOVEL INSIGHTS INTO THE ANCESTRAL ROLE OF THE NERVOUS SYSTEM

July 10, 2018

Rethinking the role

of the nervous system: Lessons from the Hydra holobiont

Klimovich and Bosch

BioEssays

We present accumulating evidence for the interaction of the nervous system with the symbiotic microbes. Our findings provide

novel insights into the original role of the nervous system, and suggest that it

emerged to orchestrate multiple functions including host‐microbiome interactions. 

THE MICROBIOME MODULATES BEHAVIOUR OF HYDRA

November 21, 2017

Spontaneous body contractions are modulated by the microbiome

of Hydra

Murillo-Rincon et al.

Scientific Reports

We show that spontaneous body contractions in Hydra are modulated by symbiotic bacteria. Germ-free animals display strongly reduced and less regular contraction frequencies. Our findings point to an evolutionary ancient origin of interactions between the microbiome and the

nerve system in Metazoa.

CNIDARIANS ARE STRATEGIC EXPERIMENTAL SYSTEMS FOR NEUROSCIENCE

December 30, 2016

Back to the basics:

Cnidarians start to fire

Bosch et al.

Trends Neuroscience

The nervous systems of cnidarians have great potential to reveal fundamental principles of neural circuits. Here, we review current knowledge on the nervous systems of cnidarian species and propose that researchers should study members of this phylum as strategic experimental systems with great basic and translational relevance for neuroscience.

FIRST EVIDENCE FOR

TUMORS IN

PRE-BILATERIAN ANIMALS

June 24, 2014

Naturally occurring tumours in

the basal metazoan Hydra

Domazet-Lošo, Klimovich et al.

Nature Communications

Here we provide the first evidence

for naturally occurring tumours in

two species of Hydra. Our study shows that spontaneous tumours have deep evolutionary roots and that early branching animals

may be informative in revealing

the fundamental mechanisms

of tumorigenesis.

IMPACT OF ENVIRONMENT ON DEVELOPMENT: INSIGHTS FROM BASAL METAZOANS

September 10, 2014

How do environmental factors influence life cycles and development? An experimental framework for early‐diverging metazoans

Bosch et al.

BioEssays

Here, we identify major questions at the interface between animal evolution and development and outline a road map for research aimed at identifying the mechanisms that link environmental factors to developmental mechanisms in early diverging metazoans.

COURSES

 

I am a passionate teacher.

I enjoy interacting with students in diverse formats - from lectures and seminars to practical courses and field excursions.

I instruct bachelor and master students in a range of courses on cell and developmental biology.

In recent years, I developed the program of an advanced practical course on ecological developmental biology of marine invertebrates.

RESUME

Professional Accomplishments

Jul 2019 -

RESEARCH ASSOCIATE (ASSISTENT)

Department of Cell and Developmental Biology, Zoological Institute,

Christian-Albrechts University Kiel

Currently, I hold a Research Associate position and focus my research on two aspects: origin and ancestral function of the nervous system, and evolutionary role of taxonomically-restricted genes (see Projects)

Sep 2018 - Jun 2019

INTERIM PROFESSOR (W3)

Department of Cell and Developmental Biology, Zoological Institute,

Christian-Albrechts University Kiel

For two consecutive semesters, I deputised for Prof. Thomas Bosch as a head of the Department of Cell and Developmental Biology and combined my research on evolution of the nervous system with teaching, mentoring students, and administrative responsibilities.

Jul 2014 - Aug 2018

RESEARCH ASSOCIATE (ASSISTENT)

Department of Cell and Developmental Biology, Zoological Institute,

Christian-Albrechts University Kiel

As a research associate, I continued my research on evolution of stem cells using the freshwater polyps Hydra as model system and dedicated myself to teaching devise courses on cell and developmental biology (see Courses). 

Apr 2011 - Jun 2014

POSTDOCTORAL RESEARCHER

Department of Cell and Developmental Biology in Zoological Institute,

Christian-Albrechts University Kiel

For two years, I have been supported by the Alexander von Humboldt fellowship (Germany) and worked as a postdoctoral fellow at Kiel University. My research was mainly focused on tracing the evolutionary origin of cancer.

Jul 2007 - Apr 2011

RESEARCHER, PHD CANDIDATE

Department of histology and cell biology

Saint-Petersburg State University

I received my PhD from Saint-Petersburg State University (Russia). I worked on my PhD project "Development of immunochemical reagents for detection of the Helicobacter pylori CagA-antigen and anti-CagA antibodies" at the Department of Hybridoma Technology in Russian Research Center for Radiology (St.-Petersburg, Russia). My supervisors were Prof. Marina P. Samoylovich and Prof. Alexander N. Suvorov.

 

SUPPORT

My research is supported by the following funding agencies. I greatly appreciate this support.

CONTACT

Zoological Institute
Christian-Albrechts University Kiel
Am Botanischen Garten 1-9
24118 Kiel
Germany

+49 431 880 4178

©2020 by Alexander Klimovich, PhD.